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Ranking and Subset Selection Procedures for Exponential
Populations with Type-I and Type-1I Censored Data

by

Roger L. Berger and Jee Soo Kim

ABSTRACT

i

)
" In this paper ranking and subset selection procedures for

exponential populations with respect to the largest location and
scale parameters are proposed. The data are assumed to be gene-
rated from Type-1 and Type-I1I censoring mechanisms. The selec-
tion procedure proposed for the largest scale parameter based on
Type-I1 censored data is equivalent to Gupta's procedure for gamma
populations. Two procedures proposed for the selection of the

largest location parameter under Type-1 censoring and Type-II

censoring are asymptotically equivalent. T
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1. INTRODUCTION

In this paper we investigate the problem of ranking and
selection for exponential populations with Type-1 and Type-II
censored data. We consider both the indifference zone formula-
tion of Bechhofer (1954) and the subset seclection formulation
of Gupta (1956). To our knowledge, W. Huang and K. Huang (1980)
are the only researchers who have considered a selection problem
with incomplete data.

Censored or incomplete data arise in various situations such
as industrial life-testing, clinical trials, and biological experi-
ments. To motivate our discussion and to illustrate how incom-
plete data can arise, we present a particular situation from in-
dustrial life-testing. A batch of n electronic components (or
items) are placed on test at time 0, and the experiment terminates

at a pre-specified time T. The failure time of a component is

~ observable if it fails before time T. If a component still func-

tions at the closure of the experiment, its failure time is not
observable. The component is said to be censored at time T.

This type of time censoring is known as Type-I censoring. In
this life-testing experiment an experimenter might not know be-
forehand what value of the fixed censoring time T is appropriate,
so he may decide to continue the experiment until a pre-specified

number r, 1 < r < n, (or a fraction %, or a proportion 100a%,

0 < a < 1) of the components have failed. Those components still
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functioning at the time of the r*® fajlure are called censored i
observations. This type of failure censoring is known as Type-11 1
censoring. Type-I and Type-11 censoring schemes have received i
much attention in the statistical literature. See Bain (1978),
Barlow and Prcschan (1966, 1967), Epstein and Sobel (1953), and
Mann et al. (1974).

ek

We deal specifically with exponential distributions subject

to these two types of censoring mechanisms. Location parameter
problems are considered in Section 2 under Type-l cemsoring and in
Section 3 under Type-II censoring. In Section 4, ranking and se-
lection problems for scale parameters under Type-1I censoring are
discussed. Tables for implementing the new procedures are presented.
Throughout this paper, we use the word increasing in place of non-

decressing and decreasing in place of nonincreasing.
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2. SUBSET SELECTION FOR THE LARGEST LOCATION
D A . ': a A

Let nl. nz. coes Ty denote k(k 2 2) independent exponential
populations with density functions

1 o-(x-2;)/0 Lx 2

£(x; 3;) =
0, x<xi, i=1,2, ..., k.

The scale parameter 6 is assumed known. The location parameter
Ai are the unknown parsmeters of interest. The parameter space

will be denoted by
A= Qd: A= (O, 2, ooy ), A 200

Let l[l] s 1[2] € .00 l[k] denote the ordered values of

11, xz, sess xk and let n(i) denote the unknown population asso-
ciated with x[i]' Our goal is the subset selection goal formu-
lated by Gupta (1956). This goal is to select a nonempty sub-
set of the k populations containing 1 x)* the population associated
with the largest parameter A[k]' A correct selection, denoted
CS, is the selection of any subset which contains g )" The popu-
lation I x) is referred to as the best population. If more than
one population could be classified as best, then one of these

is arbitrarily tagged as the best. This is done only for the
purpose of evaluating the infimm of the probability of a CS.

Ne shall propose a selection rule R, which satisfies tho P*-condition,

1
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inf P, (<$|R1) 2 P*, (2.1)
A -

vhere % < P* <1 is specified by the experimenter prior to
experimentation.

Fori=1,2, ..., k let xij.jal, 2, ..., h denote a ‘,
random sample of size n from n,. The )(ij might be the life

iengths of n items from population ni placed on test at time 0.

The xij are not themselves observable. Rather they are subjected

to Type-1 censoring. That is, there is a specified time T > 0

past which no observation will take place. Thus the observable

data are x;j. i=1,2,...,k,j=1,2, ..., n, where x;j = min(X;5, T).
Using the Factorization Theorem (Lehmann (1959), P. 49) it can

be shown that (Yl’ You coes Yk) is a sufficient statistic in

2
this problem where

. . .
Yi = min(xn, cves xin) = mn(min(xn. cees xin)' T).

The selection procedure we propose depends on the data only through
the sufficient statistic (Yl, Yz, ceoy Yk).
The observations ‘ll. Yz, cvns Yk are independent random

variables. The c.d.f. of Yi is G(yi; Ai) where

0 ify <A
Gly; A) = {1 - e PO-2)/8 HEASy<T
1 ifTsy
if A < T and
0 ify«<T
G(y; A) =
1 ifT<xsy




if T<A, IfA<T, G(y; A) is a mixed probability distribution

with an absolutely continuous part defined by the density

T £ A, G(y; A) is degenerate at T.
The selection procedure we propose is denoted by Rl'
Procedure R,: Select IIi if and only if

Y, & max Y
17 sy )

-ds
n

(2.1) is satisfied.

that d depends on n, T and @ only through % and that 0 < d
nT

5(1)10 and P* = ,75(.05).95 and .99.
do

gly; A) = g_e-n(y-x)/a for A Sy < T and a discrete part con-

sisting of a point mass at T with probability e P(T-2)/8 ¢

where d = d(k, P*, 6, T, n) 2 0 is chosen so the P*-condition

<

Table 1 gives values of d for k = 2(1)5, " .25(.25)4.00 and

(2.2)

The method of computing d will be given. It will be shown

nT

e

1£ 4 2 % then max Y, - % < 0 with probability 1 for any 2.

1<k ) °

Thus P, (CS|R)) = 1 for all A. For P* < 1, (2.1) can be achieved

withad<9}.

We will now examine P, (cslkl) to determine how d should be

chosen to ensure the P*-cundition (2.1).

Theorem 2.1. let d = %94 Then

(1 for T - d < Ak
- k-1 -

PA (CS'RI) - ]A'd { n [1-e-n(y'd-x[j])/°]) %e‘n(Y‘A[k])le

= [k] j=1

. e—n(r-z-x[k])/e

for A(k] <T-4d,

\

dy

(2.3)
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Proof. Let Y(j), j=1,2, ..., k be the observation from

Ty

IET-d <A ., 1=P(Y,. . 2T-d) s P(Y zmv(j)-z)

) ® * Sre

(k]
- ﬁL(CS|R1) <1.

If l[k] <T-4d,

Pé_(cslal) = P_x_.__(Y(k) ( )9 d, j=1, 2, ..., k-1, and Y(k) <T-4d)
* BV, 2 vm-a', 1,2, ..o, k-1, and Y0 2T - d)
= P,'\(vm +d2 Y5y j=1, 2, ..., k-1, and Ym <T- d)

0?5.(‘1(” 2T-3)

T-d k-1 -
= I Gly + d; A, P Apq)d
Amj-x 84 (5780 Apydy

'a.' [k])/e

Substituting for G and g yields (2.3). ||
For a fixed value of x[k]. the PA(CS|R1) in (2.3) decreases
. a . Thus th
if xlll XIZJ’ A[k] are all replaced by 1[k] us the
P wh = = ,,, = . If
ixf A (CSIR;) takes place when ‘il " M2y k)
As (A, A, ...,A) end A < T -~ d, then

T-d <
Py (CS[R)) = fx (1 - MOd-N/8k-1 1 nly-A)/e

]
. e-n('r-a'-a)/e
- Tl{ ed{l - e-n(yoa'—l)/e}k I’z . .-a('r-I-x)/e

- %—ed{l - e-n(T-A)le}k - é-ed{l ek, e-n(T~51A)/e_




A

Differentiation with respect to A shows that P, (CSIRl) is a
monotone increasing function of A for 0 S A < T - d.

Therefore, P, (CSIRI) is minimized by setting A = 0. ]

Theorem 2.2. For any value of d, 0 € d < 951;.

nT T

d{%(l -e )k 2 - ek oo 9y, (2.4)

kot

ixf "L(“"‘x’ = e

Sl i)

We have restricted d to be nonnegative so that a nonempty

subset is always selected. If d = 0, then from (2.4) we see that
nT -nT 1

inf Px(cslkl) = -:—(1 - e) e)k ¢ e T. If P* is less than this
A -

value, then d = 0 can be used and strict inequality holds in (2.1).
This can be observed for some small P* values in Table 1. But if
P* is greater than or equal to this value, d can be chosen so that
equality holds in (2.1) by equating the right side of (2.4) to P*
and solving for d. Note that (2.4) depends on n, &, and T only
through EOI Thus we have Theorem 2,3. T T
Theorem 2.3. Forkzz.%>0md%(1 -e e)k¢ e % <p® <1,

if d = d(x, P* “T) = -ln u where u is the solution of the polynomial

* 9 .
T a7 !
Q-wroexPu-ke ® - (1-e 9)¥aop (2.5)

_nT 1
in the interval e Ll < u <1, then the P*-condition (2.1) is satis- [
l
‘

fied with equality.
The values of d in Table 1 were computed by solving (2.5).

Let 0= (0, 0, ..., 0). Since Po(Cslnl)(the expression in (2.4))
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is a continuous strictly increasing function of 4 for 0 < d < aT

o
and P(CSIR)) = 1 if d = &, (2.5) alvays has a unique solution

nT
ine ¥ <usl. As 2}* o, d(x, P*, Eg-) + d(k, P*, =) where

d(k, P*, ®) is the solution of

d{l 1

ik -ta-eh e, a2 (2.6)

Equivalently d(k, P*, «») = -In u where u is the solution of
k *
(1-u)y +kPu-1=20, 0<ucxl.

The values of d(k, P*, «) are also listed in Table 1. For the

values of k and P* in Table 1,
ldk, P*, =) - d(k, P*, 10)} < .0001.

Finally, we note some reasonable properties of Rl in Theorem
2.4.
Theorem 2.4. Fix T » 0 and ¢ > O.

1) If T < xm OF Ay gy < xm <T, '1‘1: P_x_(cslnl) - 1.
(i1) (Monotomicity) If A S AJ.. P}_(select nilkl) < Py (select nj|Rl).

(iii) 1f A(k-1] minimm(x[k], T, '1‘2 sl(slnl) -1

where S is the size of the selected subset.




Proof.

(i) IfT< Am. Pl(cslkl) = 1 for every n. Suppose

l[k-l] < x[k] < T. Since Y(i) »-x[i] a.s. as n + w,

Pl(cslnl) 2 PL(Ym a 1:;:,‘ Ym) +1lasn+ e,

(ii) G(y; A) is stochastically increasing in A, i.e.,
G(y; Aj) S Gly; Ap) if A S Aj. This fact and Problem 11, page
112 of Lehmann (1959) yield

Ry« " Tow s

P_(select I |R =I N G(y + — ; A )dG(y; 1;)

A it 0 m=1 n m i
m*i

T k de
<[ nee e a0 4
0 m=1
mxj

SJ TGy + —; A)dG(y; A))
0 msl n " n j
n*j

= flﬁselect njlkl).

k
(iii) E}-(Slkl) = 121 Pl(sexect nmlkl).

By (i) and (ii) it suffices to show lim Pl(select n
nie -

Since 1im d = lim d(k, P*, 25 = d(k, P*, =) < =, 1im 32 a o,

xey IR = O

B T T DV NPV

ey =y oy - g




Py (select “(k~1)|R1) $1-PRO Y

de
®) "~ )

(x-1) °

| - do
<1 - g&‘y(k-l) < minimum(T, A[k]) - ;;9.

. . . de, . .
But :ig g&(y(k-l) < minimum (T, k[k]) - :;9 1, since

de
Y(k-l) *'x[k-ll < minism(T, A[k]) a.s. as n + @ and — 0 as
n+e |
If T is relatively small, then E;(SIRI) will be relatively

(i] <T<x A[i*l]

then lim EA(SIRI) = k - i. Thus setting T small may result in
Nve —

large, even for large n. More precisely, if A

savings of experiment time, but may also result in the selection

of a large subset.

Fr

|
!
t
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3. SUBSET SELECTION FOR THE LARGEST LOCATION
PARAMETER BASED ON TYPE-11 CENSORED DATA

Assume that for i = 1, 2, ..., k, xij’ j=1,2, ..., n de-
note a random sample of size n from n. Thus the xij are defined
as in Section 2. Again, we are interested in selecting a subset i
containing x[k]. In this section, we consider Type-II censored
data, rather than the Type-1 censored data of Section 2.

Let T, i=1, ..., k be fixed integers satisfying 1 < T < n. 3
Let xill] < xi[z] £ ... xi[n] denote the order statistics from :
population ni. The data from population ny is Type-11 censored 3

if the observations available from n; are xi[l]’ cens xi[ri]' This

type of data arise if n items are placed on test simultaneously y
and observation stops after the rith failure.

Assume that Type-11 censorod dataare available from each
n.. i=1,2,...,k, t.e., the data are xi[j]. i=1,2,...,k,

j=1,2,..., . Using the Factorization Theorem (Lehmann, 1959),

it can be shown that (xl[I]’ x2[1], sess xk[l]) is a sufficient

statistic for this problem. Thus the experimenter needs only ob-

serve the first failure time from each population. Alternatively,

(xlll]’ xz[‘]. cees xklll) may be thought of as the result of i

Type-II censoring with 1,1i=1, ..., k.

Ofosu (1974) proposed the following subset selection rule for

based on (X

k) 1112 X200 o %y’




Procedure R_: Select lli if and only if

—
do .
x w — = . 2. soep k
£ 10 il 16} I
where d = d(k, P*) 2 0 satisfies
{-o"u -k ap (3.1)

Ofosu showed that for %-< P* <1, R2 satisfies the P"-condition

1::’ pl (CS[Ry) 2. p*

if d is chosen as in (3.1). Condition (3.1) is the limiting
case (2.6) for the procedure Rl discussed in Section 2. This is
unsurprising since %L(Yi = xi(l]) +1as T~ for fixed n and 0.
Some desirable properties of the rule Rz are listed below.
Properties (i) and (ii) were noted by Ofosu (1974). Properties

(iii) and (iv) can be proven in a similar fashion to Theorem 2.4.
(i) sup ex(slnz) = kP*,
A A
(ii) If A, < Aj, gl(select nilkz) < gi(select nlez).
(iii) If <)\ lim P (CS|R,) = 1.
(k-1] < *pxyr 50 5 (SIR

W) IE Xy gy < Apge URBSIR) = 1.

Property (i) is in marked contrast to R1 in the Type-1 cen-
soring model. If x[l] 2T, EA(SIRIJ = k (all the populations are

surely selected). Berger (1979) showed that if a selection rule
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satisfies (i) then the rule is minimax with respect to S and S°,
the number of non-best populations selected. That is, Rz satisfies
sup E ,(slkz) = inf sup E,(S|R)
A LY Ded =

and

sup 5)(5‘“‘2) = inf sup E,(S°|R)
A = DaeA ~—

»
where Dp' is the set of all rules which satisfy the P"-condition.
In the Type-1 censoring model of Section 2, no nonrandomized rule

can be minimax since PA(Yi =T, i=1,2, ..., k) =1if xu]z T.
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4. RANKING AND SUBSET SELECTION FOR SCALE PARAMETERS
- Ao

Let My Oy eees Iy be k(k 2 2) exponential populations with
density functions

1 x/6, , ifx>0ando, >0

£0x; 0,) = {% (4.1)
0 otherwvise, i=1,2, ..., k.

The ordered values of the unknown scale parameter o, are denoted by

e[l] < 9[2] € ... $ e[k]' (4.2)

The unknown population associated with e[i] is denoted by n(i).

It is assumed that there is no prior knowledge about the correct
pairing of the k populations and the ordered scale parameters a[i]'
In the context of the reliability theory and life-testing models
8 is the mean life of an item whose life length is described by
an exponential distribution function. The population with the

parameter 0, equal to e[ ] is called the best population. The goal

k
is to identify the best population, and also the t(l <t <k - 1)
best populations.

From each population L i=1, 2, ..., k we take a sample
of n items. Let xi[l] < xi[Z] € .00 % xi[n] denote the order sta-
tistics representing the failure times of the n items from popula-

tion ni. We consider Type-1I censoring as in Section 3. Let r

be a fixed integer such that 1 < r < n. Under Type-II censoring
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the first r failures from each population I, are to be observed.
Observation on I, ceases with the observation of )(i [r)’ The

(n -~ r) items whose failure times are not observable be-.

yond the xi [r) become censored observations. Thus, the length
of the time population ni is observed is the random variable

X, [r]° Type-II censoring was first investigated by Epstein and
Sobel (1953).

Section 4.1 introduces a statistic known as the total time
on test (TTOT) statistic generated from Type-1I censoring. Some
of its well-known properties are stated in Section 4.1. Selec-
tion rules are proposed on the basis of the TTOT statisties.

4.1. Total Time on Test (TTOT) Statistics and Its Properties.

For the Type-II censored sampling the likelihood function
of the first r failures, xi[l]' xi[2], vees xi[r] from ni is

given by

[ nl

(n-r)te{

1 T
Rt R T e T Kt el-5, (1 Xy gyt 0% )]

for 0 < xi[l] < xi[2] <... sxi[r] < ®»

0, otherwise. (4.3)
\

The maximum likelihood estimate (MLE) éi of 91 obtained by setting

g%%&_f.Oi,

i
(4.4)
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r
where Z, = jglxim ¢+ (n- r)xi[r]. which can be written as

3
Z -jzlcn SRR LT I )L AR O

where X, [0 = 0. Zi represents the total time spent on observing ’
n items undergoing life-testing until the rth failure from oy ) i

whether an item is censored or uncensored. Zi is called the TTOT

e

statistic. We state some of the known properties of éi. See,
for example, Epstein and Sobel (1953), Mann et at. (1974) and
t Bain (1978).

Lemma 4.4.1. 31 defined in (4.4) has the following properties.

(i) Si is a complete and sufficient statistic for 8-
(i1) 8, is the MLE of ;-

(iii) 81 is the UMVUE of o,.

Giv) 51 is a strongly consistent estimator of 0;» i€ % is %
fixed.

2ra
w) )

is distributed as xi ,a chi-square with 2r de-
i 2rx)

grees of freedom.

i (vi) Z:l = rai has a gamma distribution with shape parameter

r and scale parameter 0. ‘

Remark 4.1.1. The distribution of Zi is independent of the sample

size n. The advantage of r failures out of a sample of n items

:
by
3
[}
1
d
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(n > r) over r failures out of a sample of r items is in the

savings of time, The expected waiting time to observe the x'th
T
. 1
failure in the sample of n, E(xi[r]) = eijzl 3T is less

than the expected waiting time for all r failures in the sample
of r items.

Procedures based on Zi, equivalently on ;i’ are proposed
with both formulations, indifference zone formulation and sub-
set selection formulation, in mind.

4.2. Indifference Zone Formulation.

Our goal is to select t, 1 <t < k - 1, populations asso-

ciated with the t largest scale parameters 0 )’ gk -t+]l,

(8
k -t +2, ..., k wvhenever the unknown parameter configuration
8 (01. ez, ey ek) is assumed to lie outside some subset of

the entire parameter space, denoted by 6. The selection of the

subset containing exactly the t largest populations will be called

the correct selection (CS). The preference zone, 9(8) is defined

by

08) = {8 e 0: On 1/0p o0gq < 8} (4.6)

where 0 < § < 1 is fixed by the experimenter.

We shall propose a selection procedure Rs for which the pro-
bability of the correct selection satisfies the following inequality

Py(CS|Ry) 2 P*, —— < P” <1 for all 8 « 0(8), (4.7
- t
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where & and P* are specified in advance. This is the formula-
tion of the selection problem presented by Bechhofer (1954).

Let the ordered values of Z i be denoted by

Z <2 (4.8)

(1] (2] S Z[k]

The procedure R3 is defined as follows.

Procedure R3: Select t populations corresponding to zm.
z[k—l]’ sseyp z(k-t’l] (1.6. select mla- (4.9)
tion ﬂi for which zi 2 z[k-t#l])'

The rule R3 which depends on observations (censored or uncensored)
only through the TTOT statistics Zi is equivalent to the procedure
based on the MLE's éi.
Having specified two quantities & and P* an experimenter is
now interested in determining the smz2iest value of r to guarantee
the basic probability cvequirement (4.7). For this purpose the
infimm of %, (CS|R;) must be obtained. Let the TTOT statistic
from the pop:lation associated with e[i] be denoted by 2 (i) It

can be shown that

"g_(cs"‘s)"g_("“{zm""'z } < min {2 (4.10)

(k-t) k-t+1)*"*2ay D

and that the least favorable configuration in ©(§) is given by

=50

1 " %121 o T 0ket)® Okt T SO[k-ter) M Cpxeee)” ot T Opiy

Thus, we can obtain

;&f) Po(CS|Ry) = (k-t)I:p:“"(u)u - Fr(cu))tdl’r(u), (4.11)

'S

LN, O
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rlx

where F (u) = _(—) r

Since Zl. cees Zk are independent gamms variables with

R St

oy o

commnon known shape parameter r and unknown seale parameter °i‘ 1
the selection rule R3 is closely related to the selection rule
studied by Bechhofer snd Sobel (1954) in their investigation of

the ranking variances of normal populations based on the sample

variances. Tables in Bechhofer and Sobel (1954) or Gidbons, Olkin

and Sobel (1977) can be used to determine the minimum r required

to satisfy (4.7). .
We now study the behaviour of the P, (CSfR3) as § and n vary. |

Theorem 4.2.1. For any fixed r, 1 <r < n,

1im inf P (CS|R3) = 1.
&40 0o(8)

Proof. This follows readily from the expression (4.11),

k-t-1 t
ei(':sf) P_(CSIR )= -t) E F. () (1 - F (su)) dFr(u)

*(k-t) r l-‘k.t'l(v.l)«-ll= (u) as § + 0
o T r !
=1. || }
Suppose that the experimenter specifies a fraction r’ say !

q(0 < q < 1), instead of fixing r. Then, as a consequence of
Lesmma 4.1.1 (iv) we get:

e N R

= TS MY 7T Y R O IR ST T R At 1
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Theorem 4.2.2. Let -:;'- q be a fixed fraction. Then for any

8 € 6(8), lim P, (CS|R,) = 1.
n-” ——

4.3 Subset Selection Formulation

The approach we take in the present section is to select a
subset of k given populations which contain the population asso-
ciated with the largest scale parameter 6 (k) A correct selection
(CS) is defined as the selection of any subset which contains the
best population. We require that the probability of including
the best population in the subset selection to be at least a
pre-assigned fixed number P', that is,

in 7, (GS|R) 2 P*, where & < P* < 1. (4.12)

4.3.1 Selection Procedure R_,' and Its Properties.

Based on the TTOT statistics 2:.l gjglxi 151 + (n - r)xi[r]'

i=1, 2, ..., k, N. Huang and K. Huang (1980) proposed the follow-
ing procedure.

Procedure R': Select the population Il i if and only if

Z; 2 cmax 2 (4.13)
1$5¢k I

where c is a positive constant, 0 < ¢ < 1, pre-assigned so as to

satisfy the P"-condition (4.12).

Since Z, has a gamma distribution with the known shape para-

i
meter r and the scale parameter °i (Lemma 4.1.1 (vi)), the expres-

sion for the igf Py ccsl R4) and 311 the desirable properties of the

ik g

”},
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rule R4 are precisely the same as those of the rule proposed
by Gupta (1963). Gupta (1963) considered a problem of a selec-
tion and ranking procedure for k gamma populations with respect
to the largest scale parameter when the shape parameter are

assumed to be known and all equal. He derived
. -1u
in€ Py(CS|R,) - f:r‘:_ GeF W) (4.14)

1 [® r1 -x
where Fr(u) - X0 IO x° “e Tdx.

We note that the right-hand side of (4.14) is independent of the
sample size n. It depends only on r, the number of observed failure
times. For various values of k, r and P', the associated constants
¢ satisfying the P*-condition are tabulated in Gupta (1963).

As a possible question in designing experiments one may ask:
For a fixed value of the constant ¢, 0 < ¢ < 1, what should the
amount of the observed failures in the data be so as to satisfy
the pre-assigned probability P* specified by the experimenter?
Monotonicity of the inf Pe(CS|R4) will resolve this problem and
will give us a uniqueesm;;iest integer r for which i:f PO(CS|R4) 2 P,

Theorem 4.3.1. For any given values of k, ¢ and P* in the selec-

tion rule R4
-1,u
inf P,(CS|R) = E il Bar_(v)
1 r-1 -t . . .
where F_(u) = —— t" "e "dt, is strictly increasing inr > 1.
r r(r) 0

- —— -
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Proof. Suppose that X is a random variable having the density
function gr(x) s cT exp{(1 - c)F;l(x)] for x ¢ [0, 1] and r > 1

where F;l (x) is the inverse function of the incomplete gamma,

F(u) = F{%T I:yr°1o'ydy. Put B(x) = log grz(x) - log z,ltx)

forrz>r1>land05xs1.

ngx! a jlicLA(X)
& frllF;I(x)]file;;(x)]

where fr(x) is a gamma density

and A(x) = frI[F;i(x)] - frz[F;:(x)]. Alan (1970) shows that A(x)

is nonnegative for all x, x ¢ [0, 1]. This proves B(x) is in-
creasing in x for all c, which in turn implies gr(x) is a density
function having a monotone likelihood ratio in x. Hence,

1
!51_(xk 1) = I xblgr(x)dx is increasing in r by Lehmann's lemma
0

(1959, page 74). But

e ol )-r AL AN

Suppose that the experimenter observes a fraction %of failures.
Then the procedure R4 is a consistent procedure in a sense that
for a sufficiently large n, the probability of including the best
population in the subset selected approaches 1.

T
Theoren 4.3.2. Llet Pl 0cq<l, be fixed. If °[k-1] < a[k]’

then 1im Py (CSIR)) = 1.
n® -

Proof. This is immediate from Lemma 4.1.1 (iv), becsuse R4 is

based on Z,, or equivalently on 61 defined in (4.4). ||
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Table 1. This table gives the necessary d-value required
for the procedure R

4
P*' = .75
\k 2 3 A s S
.25 .00001 .0000° .0000>  .0000” .0000
.50 .0987 .1818 .2030 .2093 .2123
.75 .2428 .3847 .4297 .4477 .4623
1.00 .3642 .5681 .6405 .6736 .7123
1.25 .4616 .7309 .8342 .8851 .9623
1.50 .5360 .8711 1.0090  1.0805 1.2123
1.75 .5898 .9872 1.1628  1.2577 1.4623
2.00 .6268 1.0789 1.2934  1.4144 1.7123
2.25 .6514 1.1478 1.3996  1.5482 1.9623
2.50 .6672 1.1970 1.4820 1.6578 2.2123
2.75 .6772 1.2305 1.5426  1.7433 2.4623
3.00 .6834 1.2526 1.5851  1.8068 2.7123
3.25 .6872 1.2669 1.6137  1.8516 2.9623
3.50 .6895 1.2758 1.6324  1.8820 3.2123
3.75 .6909 1.2813 1.6442  1.9018 3.4623
4.00 .6918 1.2847 1.6517  1.9145 3.7123
5.00 .6930 1.2893 1.6619  1.9324 4.7123
6.00 .6931 1.2900 1.6633  1.9349 5.7123
7.00 .6931 1.2900 1.6635  1.9352 6.7123
8.00 .6931 1.2901 1.6636  1.9353 7.7123
9.00 .6931 1.2901 1.6636  1.9353 8.7123
10.00 .6931 1.2901 1.6636  1.9153 9.7123
® .6931 1.2901 1.6636  1.9353 ®
lactual inf P(CS|R)) = .8033
2Actualian(CS|Rl) = ,7824
3pctual inf P(CSIR,) = .7794
4actual inf P(CSlRl) = .7789
| . sd*%#ln?'ask*-
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1
P* = 80
2T\ k 2 3 a 5 -
0
.25 .0000" .0222 .0261 .0267 .0269
.50 .1760 .2497 .2683 .2740 .2769
.75 .3383 .4610 .4988 .5141 .5269
1.00 .4801 .6566 .7168 .7442 .7769
1.25 .5989 .8350 .9210 .9629 1.0269 {
1.50 .6939 .9938 1.1098 1.1687 1.2769 ]
1.75 .7658 1.1305 1.2806 1.3595 1.5269
! 2.00 .8176 1.2435 1.4309 1.5329 1.7769
' 2.25 .8531 1.3325 1.5584 1.6862 2.0269
2.50 .8766 1.3989 1.6617 1.8169 2.2769
2.75 .8917 1.4462 1.7415 1.9237 2.5269
3.00 .9011 1.4783 1.8000 2.0067 2.7769
3.25 .9070 1.4994 1. 8408 2.0680 3.0269
3.50 .9106 1.5129 1.8682 2.1111 3.2769
3.75 .9129 1.5214 1.8860 2.1402 3.5269
4.00 .9142 1.5266 1.8973 2.1591 3.7769

5.00 .9160 1.5338 1.9130 2.1864 4.7769
6.00 .9163 1.5347 1.9152 2.1902 5.7769
7.00 .9163 1.5349 1.9155 2.1908 6.7769
8.00 .9163 1.5349 1.9156 2.1909 7.7769
9.00 .9163 1.5349 1.9156 2.1909 8.7769
0.00 .9163 1.5349 1.9156 2.1909 9.7769
® .9163 1.5349 1.9156 2.1909 ®

!Actual inf P(CS|R)) = .8033
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P* = .85
LA 2 3 4 5 -
\
.25 .0586 .0831 .0867 .0873 .0875
.50 .2551 .3151 .3302 .3350 .3375
.75 .4376 .5355 .5651 .5771 .5875
1.00 .6028 .7441 .7907 .8118 .8375
1.25 .7478 .9394 1.0060 1.0381 1.0875
1.50 .8702 1.1189 1.2095 1.2547 1.3375
1.75 .9687 1.2799 1.3988 1.4598 1.5875
2.00 1.0440 1.4196 1.5714 1.6512 1.8375
2.25 1.0986 1.5360 1.7243 1.8263 2.0875
2.50 1.1363 1.6285 1.8551 1.9822 2.3375
2.75 1.1614 1.6982 1.9621 2.1162 2.5875
3.00 1.1775 1.7481 2.0454 2.2267 2.8375
3.25 1.1877 1.7823 2.1070 2.3133 3.0875
3.50 1.1940 1.8048 2.1503 2.3778 3.3375
3.75 1.1979 1.8192 2.1795 2.4236 3.5875
4.00 1.2003 1.8283 2.1985 2.4545 3.8375
5.00 1.2035 1.8409 2.2258 2.5010 4.8375
6.00 1.2039 1.8426 2.2297 2.5079 5.8375
7.00 1.2040 1.8429 2.2302 2.5088 6.8375
8.00 1.2040 1.8429 2.2303 2.5089 7.8375
9.00 1.2040 1.8429 2.2303 2.5089 8.8375
10.00 1.2040 1.8429 2.2303 2.5090 9.8375
- 1.2040 1.8429 2.2303 2.5090 ©
P* = .90
nT
T\ K 2 3 a4 S ®
.25 .1219 .1410 .1440 .1445 .1446
.50 .3359 .3785 .3892 .3927 .3946
75 .5399 .6085 .6289 .6372 .6446
1.00 .7314 .8306 .8624 .8768 .8946
1.25 .9077 1.0437 1.0892 1.1109 1.1446
1.50 1.0656 1.2457 1.3079 1.3385 1.3946
1.75 1.2023 1.4342 1.5169 1.5584 1.6446
2.00 1.3158 1.6064 1.7140 1.7689 1.8946
2.25 1.4053 1.7594 1.8966 1.9679 2.1446
2.50 1.4724 1.8905 2.0617 2.1528 2.3946
2,75 1.5201 1.9989 2.2065 2.3206 2.6446
3.00 1.5525 2.0816 2.3285 2.4684 2.8946
3.25 1.5738 2.1435 2.4266 2.5938 3.1446
3.50 1.5874 2.1871 2.5016 2.6955 3.3946
3.7 1.5959 2.2165 2.5560 2.7737 3.6446
4.00 1.6012 2.2356 2.5935 2.8309 3.8946
5.00 1.6083 2.2629 2.6512 2.9254 4,9846
6.00 1.6093 2.2668 2.6598 2.9406 5.8946
7.00 1.6094 2.2674 2.6610 2.9427 6.8946
8.00 1.6094 2.2674 2.6612 2,9430 7.8946
9.00 1.6094 2.2674 2.6612 2.9430 8.8946
10.00 1.6094 2.2674 2.6612 2.9430 9.8946
- 1.6094 2.2674 2.6612 2.9430 ®
it i -
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.25 .1858 .1965 .1983 .1986 .1987
.50 .4177 .4401 .4457 .4476 .4487
.75 .6443 .6800 .6904 .6947 .6987

1.00 . 8645 .9160 .9322 .9395 .9487
1.25 1.0764 1.1474 1.1705 1.1815 1.1987
1.50 1.2777 1.3731 1.4049 1.4203 1.4487
1.75 1.4661 1.5918 1.6342 1.6552 1.6987
2.00 1.6385 1.8015 1.8575 1.8854 1.9487
2.25 1.7918 2.0000 2.0730 2.1097 2.1987
2.50 1.9234 2.1850 2.2787 2.3264 2.4487
,2.75 2.0313 2.3530 2.4724 2.5338 2.6987
3.00 2.1156 2.5013 2.6512 2.7294 2.9487
3.25 2.1780 2.6273 2.8120 2.9105 3.1987
3.50 2.2218 2.7295 2.9520 3.0742 3.4487
3.75 2.2514 2.8082 3.0689 3.2174 3.6987
4.00 2.2706 2.8658 3.1620 3.3378 3.9487
5.00 2.2981 2.9610 3.3400 3.5977 4.9487
6.00 2.3020 2.9762 3.3729 3.6536 5.9487
7.00 2.3025 2.9783 3.3777 3.6619 6.9487
8.00 2.3026 2.9786 3.3783 3.6631 7.9487
9.00 2.3026 2.9786 3.3784 3.6632 8.9487
10.00 2.3026 2.9786 3.3784 3.6632 9.9487
- 2.3026 2.9786 3.3784 3.6632 ®
P* = .99
aT ©
e 2 3 4 S
.25 .2372 .2394 .2398 .2399 .2399
.50 .4835 .4881 .4893 .4897 .4899
.75 .7288 .7361 .7382 .7391 .7399
1.00 .9728 .9833 .9866 .9881 .9899
1.25 1.2151 1.2296 1.2343 1.2365 1.2399
1.50 1.4552 1.4747 1.4811 1.4842 1.4899
1.75 1.6925 1.7184 1.7270 1.7312 1.7399
2.00 1.9262 1.9603 1.9717 1.9773 1.9899
2.25 2.1553 2.1999 2.2147 2.2221 2.2399
2.50 2.3785 2.4364 2.4558 2.4655 2.4899
2.75 2.5942 2.6692 2.6943 2.7069 2.7399
3.00 2.8005 2.8970 2.9295 2.9458 2.9899
3.25 2.9949 3.1187 3.1606 3.1816 3.2399
3.50 3.1746 3.3324 3.3862 3.4133 3.4899
3.75 3.3367 3.5362 3.6051 3.6399 3.7399
4.00 3.4780 3.7275 3.8153 3.8599 3.9899
5.00 3.8141 4.3101 4.5195 4.6326  4.9899
6.00 3.8970 4.5454 4.8902 5.1078 5.9899
. 7.00 3.9100 4.5936 4.9880 5.2616  6.9899
8.00 3.9117 4.6007 5.0036 5.2888 7.9899
9.00 3.9120 4.6017 5.0058 5.2927 8.9899
10.00 3.9120 4.6017 5.0061 5.2932  9.9899
- 3.9120 4,6018 5.0062 $.2933 -
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